part7-bluetooth now scanning and showing found addresses

This commit is contained in:
Adam Greenwood-Byrne 2020-07-26 19:28:44 +01:00
parent 724c77758e
commit 46b8b14186
5 changed files with 212 additions and 94 deletions

View file

@ -18,11 +18,14 @@ enum {
ARM_UART0_ICR = ARM_UART0_BASE + 0x44 ARM_UART0_ICR = ARM_UART0_BASE + 0x44
}; };
unsigned char lo(unsigned int val) { return (unsigned char)(val & 0xff); }
unsigned char hi(unsigned int val) { return (unsigned char)((val & 0xff00) >> 8); }
unsigned int bt_isReadByteReady() { return (!(mmio_read(ARM_UART0_FR) & 0x10)); } unsigned int bt_isReadByteReady() { return (!(mmio_read(ARM_UART0_FR) & 0x10)); }
unsigned char bt_readByte() unsigned char bt_readByte()
{ {
unsigned char ch = mmio_read(ARM_UART0_DR) & 0xff; unsigned char ch = lo(mmio_read(ARM_UART0_DR));
return ch; return ch;
} }
@ -63,3 +66,114 @@ void bt_init()
wait_msec(0x100000); wait_msec(0x100000);
} }
// HOST SETUP
enum {
OGF_HOST_CONTROL = 0x03,
OGF_LE_CONTROL = 0x08,
OGF_VENDOR = 0x3f,
COMMAND_RESET_CHIP = 0x03,
COMMAND_LOAD_FIRMWARE = 0x2e,
HCI_COMMAND_PKT = 0x01,
HCI_EVENT_PKT = 0x04,
COMMAND_COMPLETE_CODE = 0x0e,
LL_SCAN_ACTIVE = 0x01
};
unsigned char empty[] = {};
int hciCommandBytes(unsigned char *opcodebytes, unsigned char *data, unsigned char length)
{
unsigned char c=0;
bt_writeByte(HCI_COMMAND_PKT);
bt_writeByte(opcodebytes[0]);
bt_writeByte(opcodebytes[1]);
bt_writeByte(length);
while (c++<length) bt_writeByte(*data++);
if (bt_waitReadByte() != HCI_EVENT_PKT) return 0;
if (bt_waitReadByte() != COMMAND_COMPLETE_CODE) return 0;
if (bt_waitReadByte() != 4) return 0;
if (bt_waitReadByte() == 0) return 0;
if (bt_waitReadByte() != opcodebytes[0]) return 0;
if (bt_waitReadByte() != opcodebytes[1]) return 0;
if (bt_waitReadByte() != 0) return 0;
return 1;
}
int hciCommand(unsigned short ogf, unsigned short ocf, unsigned char *data, unsigned char length)
{
unsigned short opcode = ogf << 10 | ocf;
unsigned char opcodebytes[2] = { lo(opcode), hi(opcode) };
return hciCommandBytes(opcodebytes, data, length);
}
void bt_loadfirmware()
{
if (!hciCommand(OGF_VENDOR, COMMAND_LOAD_FIRMWARE, empty, 0)) uart_writeText("loadFirmware() failed\n");
extern unsigned char _binary_BCM4345C0_hcd_start[];
extern unsigned char _binary_BCM4345C0_hcd_size[];
unsigned int c=0;
unsigned int size = (long)&_binary_BCM4345C0_hcd_size;
while (c < size) {
unsigned char opcodebytes[] = { _binary_BCM4345C0_hcd_start[c], _binary_BCM4345C0_hcd_start[c+1] };
unsigned char length = _binary_BCM4345C0_hcd_start[c+2];
unsigned char *data = &(_binary_BCM4345C0_hcd_start[c+3]);
if (!hciCommandBytes(opcodebytes, data, length)) {
uart_writeText("Firmware data load failed\n");
break;
}
c += 3 + length;
}
wait_msec(0x100000);
}
void setLEeventmask(unsigned char mask)
{
unsigned char params[] = { mask, 0, 0, 0, 0, 0, 0, 0 };
if (!hciCommand(OGF_LE_CONTROL, 0x01, params, 8)) uart_writeText("setLEeventmask failed\n");
}
void setLEscanenable(unsigned char state, unsigned char duplicates) {
unsigned char params[] = { state, duplicates };
if (!hciCommand(OGF_LE_CONTROL, 0x0c, params, 2)) uart_writeText("setLEscanenable failed\n");
}
void setLEscanparameters(unsigned char type, unsigned char linterval, unsigned char hinterval, unsigned char lwindow, unsigned char hwindow, unsigned char own_address_type, unsigned char filter_policy) {
unsigned char params[] = { type, linterval, hinterval, lwindow, hwindow, own_address_type, filter_policy };
if (!hciCommand(OGF_LE_CONTROL, 0x0b, params, 7)) uart_writeText("setLEscanparameters failed\n");
}
void startActiveScanning() {
float BleScanUnitsPerSecond = 1600;
float BleScanInterval = 0.8;
float BleScanWindow = 0.4;
unsigned int p = BleScanInterval * BleScanUnitsPerSecond;
unsigned int q = BleScanWindow * BleScanUnitsPerSecond;
setLEscanparameters(LL_SCAN_ACTIVE, lo(p), hi(p), lo(q), hi(q), 0, 0);
setLEscanenable(1, 0);
}
void stopScanning() {
setLEscanenable(0, 0);
}
void bt_reset() {
if (!hciCommand(OGF_HOST_CONTROL, COMMAND_RESET_CHIP, empty, 0)) uart_writeText("bt_reset() failed\n");
}

View file

@ -1,3 +1,7 @@
unsigned char bt_waitReadByte(); void bt_reset();
void bt_writeByte(unsigned char byte);
void bt_init(); void bt_init();
void bt_loadfirmware();
void setLEeventmask(unsigned char mask);
void startActiveScanning();
unsigned int bt_isReadByteReady();
unsigned char bt_readByte();

View file

@ -147,8 +147,8 @@ void uart_writeByteBlocking(unsigned char ch) {
void uart_writeText(char *buffer) { void uart_writeText(char *buffer) {
while (*buffer) { while (*buffer) {
if (*buffer == '\n') uart_writeByteBlocking('\r'); if (*buffer == '\n') uart_writeByteBlockingActual('\r');
uart_writeByteBlocking(*buffer++); uart_writeByteBlockingActual(*buffer++);
} }
} }
@ -174,6 +174,6 @@ void uart_hex(unsigned int d) {
// 0-9 => '0'-'9', 10-15 => 'A'-'F' // 0-9 => '0'-'9', 10-15 => 'A'-'F'
n+=n>9?0x37:0x30; n+=n>9?0x37:0x30;
uart_writeByteBlocking(n); uart_writeByteBlockingActual(n);
} }
} }

View file

@ -5,7 +5,7 @@ void uart_writeText(char *buffer);
void uart_loadOutputFifo(); void uart_loadOutputFifo();
unsigned char uart_readByte(); unsigned char uart_readByte();
unsigned int uart_isReadByteReady(); unsigned int uart_isReadByteReady();
void uart_writeByteBlocking(unsigned char ch); void uart_writeByteBlockingActual(unsigned char ch);
void uart_update(); void uart_update();
void mmio_write(long reg, unsigned int val); void mmio_write(long reg, unsigned int val);
unsigned int mmio_read(long reg); unsigned int mmio_read(long reg);

View file

@ -1,122 +1,122 @@
#include "io.h" #include "io.h"
#include "fb.h"
#include "bt.h" #include "bt.h"
#define MAX_MSG_LEN 50
#define MAX_READ_RUN 100
unsigned char data_buf[MAX_MSG_LEN];
unsigned int data_len;
unsigned int messages_received = 0;
unsigned int poll_state = 0;
enum { enum {
OGF_HOST_CONTROL = 0x03, LE_EVENT_CODE = 0x3e,
OGF_LE_CONTROL = 0x08, LE_ADREPORT_CODE = 0x02,
OGF_VENDOR = 0x3f, HCI_EVENT_PKT = 0x04
COMMAND_RESET_CHIP = 0x03,
VENDOR_LOAD_FIRMWARE = 0x2e,
HCI_COMMAND_PKT = 0x01,
HCI_EVENT_PKT = 0x04,
LL_SCAN_ACTIVE = 0x01,
EVENT_TYPE_COMMAND_STATUS = 0x0e
}; };
unsigned char lo(unsigned int val) { return (unsigned char)(val & 0xff); } void poll2(unsigned char byte)
unsigned char hi(unsigned int val) { return (unsigned char)((val & 0xff00) >> 8); }
unsigned char empty[] = {};
int hciCommandBytes(unsigned char *opcodebytes, unsigned char *data, unsigned char length)
{ {
unsigned char c=0; switch (poll_state) {
case 0:
bt_writeByte(HCI_COMMAND_PKT); if (byte != HCI_EVENT_PKT) poll_state = 0;
bt_writeByte(opcodebytes[0]); else poll_state = 1;
bt_writeByte(opcodebytes[1]);
bt_writeByte(length);
while (c++<length) bt_writeByte(*data++);
if (bt_waitReadByte() != HCI_EVENT_PKT) return 0;
if (bt_waitReadByte() != EVENT_TYPE_COMMAND_STATUS) return 0;
if (bt_waitReadByte() != 4) return 0;
if (bt_waitReadByte() == 0) return 0;
if (bt_waitReadByte() != opcodebytes[0]) return 0;
if (bt_waitReadByte() != opcodebytes[1]) return 0;
if (bt_waitReadByte() != 0) return 0;
return 1;
}
int hciCommand(unsigned short ogf, unsigned short ocf, unsigned char *data, unsigned char length)
{
unsigned short opcode = ogf << 10 | ocf;
unsigned char opcodebytes[2] = { lo(opcode), hi(opcode) };
return hciCommandBytes(opcodebytes, data, length);
}
void loadFirmware()
{
if (!hciCommand(OGF_VENDOR, VENDOR_LOAD_FIRMWARE, empty, 0)) uart_writeText("loadFirmware() failed\n");
extern unsigned char _binary_BCM4345C0_hcd_start[];
extern unsigned char _binary_BCM4345C0_hcd_size[];
unsigned int c=0;
unsigned int size = (long)&_binary_BCM4345C0_hcd_size;
while (c < size) {
unsigned char opcodebytes[] = { _binary_BCM4345C0_hcd_start[c], _binary_BCM4345C0_hcd_start[c+1] };
unsigned char length = _binary_BCM4345C0_hcd_start[c+2];
unsigned char *data = &(_binary_BCM4345C0_hcd_start[c+3]);
if (!hciCommandBytes(opcodebytes, data, length)) {
uart_writeText("Firmware data load failed\n");
break; break;
case 1:
if (byte != LE_EVENT_CODE) poll_state = 0;
else poll_state = 2;
break;
case 2:
if (byte > MAX_MSG_LEN) poll_state = 0;
else {
poll_state = 3;
data_len = byte;
}
break;
default:
data_buf[poll_state - 3] = byte;
if (poll_state == data_len + 3 - 1) {
messages_received++;
poll_state = 0;
} else poll_state++;
} }
c += 3 + length;
} }
wait_msec(0x100000); unsigned char *poll()
}
void setLEeventmask(unsigned char mask)
{ {
unsigned char params[] = { mask, 0, 0, 0, 0, 0, 0, 0 }; unsigned int goal = messages_received + 1;
if (!hciCommand(OGF_LE_CONTROL, 0x01, params, 8)) uart_writeText("setLEeventmask failed\n");
if (bt_isReadByteReady()) {
unsigned int run = 0;
while (run < MAX_READ_RUN && messages_received < goal && bt_isReadByteReady()) {
unsigned char byte = bt_readByte();
poll2(byte);
run++;
}
if (run == MAX_READ_RUN) return 0;
else return data_buf;
}
return 0;
} }
void setLEscanenable(unsigned char state, unsigned char duplicates) { void bt_update()
unsigned char params[] = { state, duplicates }; {
if (!hciCommand(OGF_LE_CONTROL, 0x0c, params, 2)) uart_writeText("setLEscanenable failed\n"); unsigned char *buf;
while ( (buf = poll()) ) {
if (data_len >= 2 && buf[0] == LE_ADREPORT_CODE) {
unsigned char numreports = buf[1];
if (numreports == 1 && data_len >= 11) {
uart_writeText("a(");
for (int c=9;c>=4;c--) {
if (c != 9) uart_writeText(":");
uart_hex(buf[c]);
} }
uart_writeText(")");
void setLEscanparameters(unsigned char type, unsigned char linterval, unsigned char hinterval, unsigned char lwindow, unsigned char hwindow, unsigned char own_address_type, unsigned char filter_policy) { unsigned char buf_len = buf[10];
unsigned char params[] = { type, linterval, hinterval, lwindow, hwindow, own_address_type, filter_policy };
if (!hciCommand(OGF_LE_CONTROL, 0x0b, params, 7)) uart_writeText("setLEscanparameters failed\n"); if ((buf_len + 11) == data_len - 1) {
buf += 11;
unsigned char rssi = buf[buf_len];
uart_writeText(" -> rssi("); uart_hex(rssi); uart_writeText(")");
unsigned char ad_len = buf[0];
unsigned char ad_type = buf[1];
buf += 2;
uart_writeText(" -> adtype("); uart_hex(ad_type); uart_writeText(":"); uart_hex(ad_len); uart_writeText(")");
if (ad_len > 2) {
if (ad_type == 0xff) {
uart_writeText(" -> "); uart_hex(buf[1] << 8); uart_writeText(":"); uart_hex(buf[0]); uart_writeText("\n");
}
}
}
uart_writeText("\r");
}
}
} }
void startActiveScanning() {
float BleScanUnitsPerSecond = 1600;
float BleScanInterval = 0.8;
float BleScanWindow = 0.4;
unsigned int p = BleScanInterval * BleScanUnitsPerSecond;
unsigned int q = BleScanWindow * BleScanUnitsPerSecond;
setLEscanparameters(LL_SCAN_ACTIVE, lo(p), hi(p), lo(q), hi(q), 0, 0);
setLEscanenable(1, 0);
} }
void main() void main()
{ {
fb_init();
uart_init(); uart_init();
bt_init(); bt_init();
uart_writeText("reset()\n"); uart_writeText("bt_reset()\n");
if (!hciCommand(OGF_HOST_CONTROL, COMMAND_RESET_CHIP, empty, 0)) uart_writeText("reset() failed\n"); bt_reset();
uart_writeText("loadfirmware()\n"); uart_writeText("bt_loadfirmware()\n");
loadFirmware(); bt_loadfirmware();
setLEeventmask(0xff); setLEeventmask(0xff);
startActiveScanning(); startActiveScanning();
uart_writeText("Waiting for input...\n"); uart_writeText("Waiting for input...\n");
while (1) uart_update(); while (1) {
uart_update();
bt_update();
}
} }