Jordan Bancino
e592cd8e5c
This is going to be useful with state resolution and dependency ordering, both of which will be crutial components of Telodendria.
347 lines
6 KiB
C
347 lines
6 KiB
C
/*
|
|
* Copyright (C) 2022-2023 Jordan Bancino <@jordan:bancino.net>
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person
|
|
* obtaining a copy of this software and associated documentation files
|
|
* (the "Software"), to deal in the Software without restriction,
|
|
* including without limitation the rights to use, copy, modify, merge,
|
|
* publish, distribute, sublicense, and/or sell copies of the Software,
|
|
* and to permit persons to whom the Software is furnished to do so,
|
|
* subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be
|
|
* included in all copies or portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include <Graph.h>
|
|
|
|
#include <Memory.h>
|
|
|
|
#include <string.h>
|
|
|
|
struct Graph
|
|
{
|
|
size_t n;
|
|
Edge *matrix;
|
|
};
|
|
|
|
Graph *
|
|
GraphCreate(size_t n)
|
|
{
|
|
Graph *g;
|
|
|
|
if (!n)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
g = Malloc(sizeof(Graph));
|
|
if (!g)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
g->n = n;
|
|
|
|
g->matrix = Malloc((n * n) * sizeof(Edge));
|
|
if (!g->matrix)
|
|
{
|
|
Free(g);
|
|
return NULL;
|
|
}
|
|
|
|
memset(g->matrix, 0, (n * n) * sizeof(Edge));
|
|
|
|
return g;
|
|
}
|
|
|
|
Graph *
|
|
GraphCreateWithEdges(size_t n, Edge * matrix)
|
|
{
|
|
Graph *g = GraphCreate(n);
|
|
|
|
if (!g)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
memcpy(g->matrix, matrix, (n * n) * sizeof(Edge));
|
|
|
|
return g;
|
|
}
|
|
|
|
void
|
|
GraphFree(Graph * g)
|
|
{
|
|
if (!g)
|
|
{
|
|
return;
|
|
}
|
|
|
|
Free(g->matrix);
|
|
Free(g);
|
|
}
|
|
|
|
Edge
|
|
GraphEdgeGet(Graph * g, Node n1, Node n2)
|
|
{
|
|
if (n1 >= g->n || n2 >= g->n)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
return g->matrix[(g->n * n1) + n2];
|
|
}
|
|
|
|
Edge
|
|
GraphEdgeSet(Graph * g, Node n1, Node n2, Edge e)
|
|
{
|
|
int oldVal;
|
|
|
|
if (n1 >= g->n || n2 >= g->n)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
if (e < 0)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
oldVal = g->matrix[(g->n * n1) + n2];
|
|
|
|
g->matrix[(g->n * n1) + n2] = e;
|
|
|
|
return oldVal;
|
|
}
|
|
|
|
size_t
|
|
GraphCountNodes(Graph * g)
|
|
{
|
|
return g ? g->n : 0;
|
|
}
|
|
|
|
Node *
|
|
GraphBreadthFirstSearch(Graph * G, Node s, size_t * n)
|
|
{
|
|
Node *visited;
|
|
Node *queue;
|
|
Node *result;
|
|
size_t queueSize;
|
|
Node i;
|
|
|
|
if (!G || !n)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
*n = 0;
|
|
|
|
result = Malloc(G->n * sizeof(Node));
|
|
if (!result)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
if (s >= G->n)
|
|
{
|
|
Free(result);
|
|
return NULL;
|
|
}
|
|
|
|
visited = Malloc(G->n * sizeof(Node));
|
|
memset(visited, 0, G->n * sizeof(Node));
|
|
queue = Malloc(G->n * sizeof(Node));
|
|
queueSize = 0;
|
|
|
|
visited[s] = 1;
|
|
|
|
queueSize++;
|
|
queue[queueSize - 1] = s;
|
|
|
|
while (queueSize)
|
|
{
|
|
s = queue[queueSize - 1];
|
|
queueSize--;
|
|
|
|
result[*n] = s;
|
|
(*n)++;
|
|
|
|
for (i = 0; i < G->n; i++)
|
|
{
|
|
if (GraphEdgeGet(G, s, i) && !visited[i])
|
|
{
|
|
visited[i] = 1;
|
|
|
|
queueSize++;
|
|
queue[queueSize - 1] = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
Free(visited);
|
|
Free(queue);
|
|
|
|
return result;
|
|
}
|
|
|
|
static void
|
|
GraphDepthFirstSearchRecursive(Graph * G, Node s, Node * result, size_t * n,
|
|
Node * visited)
|
|
{
|
|
size_t i;
|
|
|
|
visited[s] = 1;
|
|
|
|
result[*n] = s;
|
|
(*n)++;
|
|
|
|
for (i = 0; i < G->n; i++)
|
|
{
|
|
if (GraphEdgeGet(G, s, i) && !visited[i])
|
|
{
|
|
GraphDepthFirstSearchRecursive(G, i, result, n, visited);
|
|
}
|
|
}
|
|
}
|
|
|
|
Node *
|
|
GraphDepthFirstSearch(Graph * G, Node s, size_t * n)
|
|
{
|
|
Node *visited;
|
|
Node *result;
|
|
|
|
if (!G || !n)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
result = Malloc(G->n * sizeof(Node));
|
|
if (!result)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
*n = 0;
|
|
|
|
if (s >= G->n)
|
|
{
|
|
Free(result);
|
|
return NULL;
|
|
}
|
|
|
|
visited = Malloc(G->n * sizeof(Node));
|
|
memset(visited, 0, G->n * sizeof(Node));
|
|
|
|
GraphDepthFirstSearchRecursive(G, s, result, n, visited);
|
|
|
|
Free(visited);
|
|
|
|
return result;
|
|
}
|
|
|
|
static void
|
|
GraphTopologicalSortRecursive(Graph * G, Node s, Node * visited,
|
|
Node * stack, size_t * stackSize)
|
|
{
|
|
size_t i;
|
|
|
|
visited[s] = 1;
|
|
|
|
for (i = 0; i < G->n; i++)
|
|
{
|
|
if (GraphEdgeGet(G, s, i) && !visited[i])
|
|
{
|
|
GraphTopologicalSortRecursive(G, i, visited, stack, stackSize);
|
|
}
|
|
}
|
|
|
|
stack[*stackSize] = s;
|
|
(*stackSize)++;
|
|
}
|
|
|
|
Node *
|
|
GraphTopologicalSort(Graph * G, size_t * n)
|
|
{
|
|
Node *visited;
|
|
Node *stack;
|
|
Node *result;
|
|
|
|
size_t i;
|
|
size_t stackSize;
|
|
|
|
if (!G || !n)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
*n = 0;
|
|
|
|
result = Malloc(G->n * sizeof(Node));
|
|
if (!result)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
visited = Malloc(G->n * sizeof(Node));
|
|
memset(visited, 0, G->n * sizeof(Node));
|
|
stack = Malloc(G->n * sizeof(Node));
|
|
memset(stack, 0, G->n * sizeof(Node));
|
|
|
|
stackSize = 0;
|
|
|
|
for (i = 0; i < G->n; i++)
|
|
{
|
|
if (!visited[i])
|
|
{
|
|
GraphTopologicalSortRecursive(G, i, visited, stack, &stackSize);
|
|
}
|
|
}
|
|
|
|
Free(visited);
|
|
|
|
while (stackSize)
|
|
{
|
|
stackSize--;
|
|
result[*n] = stack[stackSize];
|
|
(*n)++;
|
|
}
|
|
|
|
Free(stack);
|
|
|
|
return result;
|
|
}
|
|
|
|
Graph *
|
|
GraphTranspose(Graph * G)
|
|
{
|
|
Graph *T = Malloc(sizeof(Graph));
|
|
size_t i, j;
|
|
|
|
T->n = G->n;
|
|
T->matrix = Malloc((G->n * G->n) * sizeof(Edge));
|
|
|
|
memset(T->matrix, 0, (T->n * T->n) * sizeof(Edge));
|
|
|
|
for (i = 0; i < G->n; i++)
|
|
{
|
|
for (j = 0; j < G->n; j++)
|
|
{
|
|
if (GraphEdgeGet(G, i, j))
|
|
{
|
|
GraphEdgeSet(T, j, i, GraphEdgeGet(G, i, j));
|
|
}
|
|
}
|
|
}
|
|
|
|
return T;
|
|
}
|